Folding a nonbiological polymer into a compact multihelical structure.

نویسندگان

  • Byoung-Chul Lee
  • Ronald N Zuckermann
  • Ken A Dill
چکیده

The only molecules that are currently known to fold into unique three-dimensional conformations and perform sophisticated functions are biological polymers - proteins and some RNA molecules. Our aim is to create a nonbiological sequence-specific polymer that folds in aqueous solution. Toward that end, we synthesized sequence-specific 30mer, 45mer, and 60mer peptoid oligomers (N-substituted glycine polymers) consisting of 15mer units we chained together by disulfide and oxime linkages to mimic the helical bundle structures commonly found in proteins. Because these 15mer sequences were previously shown to form defined helical structures that aggregate together at submillimolar concentrations, we expected that by covalently linking multiple 15mers together, they might fold as helical bundles. To probe whether they folded, we used fluorescence resonance energy transfer (FRET) reporter groups. We found that certain constructs fold up with a hydrophobic core and have cooperative folding transitions. Such molecules may ultimately provide a platform for designing specific functions resembling those of proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chain Length Dependence on Folding Transition of a Semiflexible Homo-Polymer Chain: Appearance of a Core-Shell Structure

The folding transition of single, long semiflexible polymers was studied with special emphasis on the chain length effect using Monte Carlo simulations. While a relatively short chain (10-25 Kuhn segments) undergoes a large discrete transition between swollen coil and compact toroid conformations, a long chain (50 Kuhn segments) exhibits an intrachain segregated state between the disordered coi...

متن کامل

Evolutionary optimization of a nonbiological ATP binding protein for improved folding stability.

Structural comparison of in vitro evolved proteins with biological proteins will help determine the extent to which biological proteins sample the structural diversity available in protein sequence space. We have previously isolated a family of nonbiological ATP binding proteins from an unconstrained random sequence library. One of these proteins was further optimized for high-affinity binding ...

متن کامل

Depletion of the Chromatin Looping Proteins CTCF and Cohesin Causes Chromatin Compaction: Insight into Chromatin Folding by Polymer Modelling

Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding. Here we explore the view that intrachromosomal interactions, forming a complex pat...

متن کامل

Hydrodynamic selection of the kinetic pathway of a polymer coil-globule transition.

Recently, the role of hydrodynamic interactions in the selection of a kinetic pathway for phase transitions has attracted considerable attention. Here we study this problem numerically by taking as an example a coil-globule transition of a single polymer, which is a prototype model of protein folding. When a swollen polymer collapses into a globule state, hydrodynamic interactions accelerate th...

متن کامل

Secondary structures in long compact polymers.

Compact polymers are self-avoiding random walks that visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte Carlo algorithm that uniformly samples com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 31  شماره 

صفحات  -

تاریخ انتشار 2005